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Abstract

 Background—Surgical site infection (SSI) remains a common, costly and morbid healthcare-

associated infection. Early detection may improve outcomes, yet previous risk models consider 

only baseline risk factors (“BF”), not incorporating a proximate and timely data source: the wound 

itself. We hypothesize that incorporation of daily wound assessment improves the accuracy of SSI 

identification compared to traditional BF alone.

 Methods—A prospective cohort of 1,000 post-open abdominal surgery patients at an academic 

teaching hospital were examined daily for serial features (“SF”), e.g. wound characteristics and 

vital signs, in addition to standard BF, e.g. wound class. Using supervised machine learning, we 

trained three Naïve Bayes classifiers (BF, SF, BF+SF) using patient data from 1-5 days before 

diagnosis to classify SSI on the following day. For comparison, we also created a simplified SF 

model that used logistic regression. Control patients without SSI were matched on 5 similar 

consecutive post-operative days to avoid confounding by length of stay. Accuracy, sensitivity/

specificity, and AUC were calculated on a training and hold-out testing set.
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 Results—Of 851 patients, 19.4% had inpatient SSI. Univariate analysis showed differences in 

CRP, surgery duration and contamination, but no differences in ASA scores, diabetes or 

emergency surgery. The BF/SF/BF+SF classifiers had AUC of 0.67/0.76/0.76. The best 

performing classifier (SF) had optimal sensitivity of 0.80, specificity of 0.64, PPV of 0.35, and 

NPV of 0.93. Features most associated with subsequent SSI diagnosis were granulation degree, 

exudate amount, nasogastric tube presence, and heart rate.

 Conclusions—Serial features provided moderate PPV and high NPV for early identification 

of SSI. Addition of baseline risk factors did not improve identification. Features of evolving 

wound infection are discernable prior to the day of diagnosis primarily based on visual inspection.
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 Introduction

Surgical site infections (SSI) occur in 3-5% of all surgical patients, and up to 33% of 

patients undergoing abdominal surgery.(1, 2) More than 500,000 SSIs are estimated to occur 

in the US annually, resulting in worse outcomes including length of stay, mortality, and 

health-related quality of life, and additional average costs of as much as $20,000 per 

infection.(3–7) SSI is the overall costliest healthcare-associated infection, yet many of its 

associated costs are non-reimbursable.(8, 9)

Many risk scores for SSI have been developed over the years, ranging from simple (e.g., 

National Nosocomial Infections Surveillance, which includes only 3 predictors) to complex 

(e.g., Surgical Site Infection Risk Score, with 12 covariates and 4 interactions).(10–15) 

These risk score models have three main limitations.

First, methodically, existing models frequently use univariate variable selection combined 

with stepwise logistic regression. These traditional methods do not ideally handle nonlinear 

data and may result in both selection of a suboptimal variable set and overfitting, especially 

when the number of potential variables is high.(16) An alternative is the application of 

machine learning, an approach to data analysis that has evolved from pattern recognition and 

computational learning theory. It involves the construction of algorithms (analogous to 

statistical models) that can both learn from an existing dataset and predict, or “classify” 

outcomes using “features” (analogous to variables) as input. Modern feature selection 

techniques developed to avoid overfitting in the context of high-dimensional “big data” (e.g., 

genomic studies) provide a more robust and reliable alternative.(17–19) Machine learning is 

especially well suited to biological systems because they tend to evolve large, noisy, non-

linear and complex data sets. Widely used in other domains, machine learning is 

increasingly being explored in healthcare research and practice for pneumonia prediction, 

genomics, and cancer diagnosis and prediction.(20–22)

Second, these models do not provide a time-specific prediction. Predictions generally apply 

over a 30-day post-operative time horizon, if specified at all, leaving providers without 
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clinically-actionable data. These models facilitate risk-adjustment more than clinical 

decision support.

Third, existing models only incorporate static variables known as of the end of the operation, 

for example, patient characteristics, pre-operative laboratory results, comorbidities, and 

operative factors. These models do not incorporate a rich and continuing source of data: 

serial observations of the patient and their wound that may serve as markers for changing 

risk of SSI over time.

We hypothesize that incorporation of daily wound assessment data (i.e., SF) improves the 

performance of SSI classification compared to traditional baseline risk factors alone (i.e., 

BF). To test this hypothesis, we employed machine learning techniques to develop and test 

SSI classifiers for SF and BF data.

 Methods

Ethics approval was obtained for the parent study,(23) briefly described below, from which 

the dataset was derived; the present analysis was deemed exempt from review by the 

University of Washington IRB due to the deidentified nature of the dataset.

 Study population

Data was drawn from a prospective cohort study of 1,000 open abdominal surgery patients 

conducted at a 1,200-bed academic teaching hospital in the Netherlands, described 

previously.(23) Patients who did not ultimately undergo open surgery (n=33) or with <2 

days of wound observations (n=116) were excluded from analysis, leaving 851 patients in 

total.

 Data collection

The parent dataset had been created by a trained research team that tracked infections 

independently from the clinical care providers, and the observations were supervised daily 

and adjudicated weekly by the principle investigator (GHvR). BF collected included 

demographics, preoperative labs, procedure characteristics, other risk factors, and outcomes 

(see Results Table 1 for a full list of BF collected). SF collected daily from post-operative 

day 2 included abdominal wound characteristics and vital signs (see Supplemental Table 1 

for a full list, including definitions of categorical wound score variables).(24) The primary 

outcome was SSI using the Centers for Disease Control and Prevention (CDC) criteria for 

superficial, deep and/or organ space infections. Follow-up was done at the outpatient clinic 

on postoperative day 30, or alternatively by telephone or letter. Patient charts, discharge 

letters, wound photographs, and culture results were reviewed by GHvR after a minimum 

period of three months following discharge.

For the purpose of the present analysis, we defined the SSI group as having any of the 3 

types of SSI, as have prior studies.(12–15, 25, 26) Our initial analyses showed that baseline 

and serial features generally did not vary significantly among different classes of SSI, and 

we could not separately model subtypes of SSI due to the small numbers of deep and organ-

space infections. In addition, though a patient may have developed multiple types of SSI 
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during their hospital stay, we only include their first infection in this analysis. The non-SSI 

group was defined as having no inpatient SSI; post-discharge SSI were not disqualifying. We 

grouped patients in this way because initial analyses of the data showed that patients with 

post-discharge SSI, while they were in the hospital, closely resembled patients who never 

developed SSI in terms of both BF and SF. Post-discharge SSI rates are included for 

descriptive purposes, but due to lack of post-discharge serial wound observations, we focus 

on modeling inpatient SSI.

 Univariate analysis

For BF, we tested for differences between SSI and non-SSI groups using ANOVA for 

continuous variables and Pearson's chi-squared for binary and categorical variables. For 

serial features, we used reversed time analysis to examine symptom trends leading up to SSI 

diagnosis. Specifically, we normalized observation times to the initial day of SSI diagnosis 

as “Day 0”, and then looked backwards in time from days -5 through -1 (i.e., 5 days before 

SSI diagnosis to 1 day before SSI diagnosis). Patients without SSI were matched so as to 

have similar post-operative days included for comparison, resulting in an equal distribution 

(mean, SD) of SSI and non-SSI post-operative days in the analysis to avoid confounding by 

length of stay (patients with SSI had longer LOS). Statistical analysis was conducted using 

Stata 13 (StataCorp).

 Model development

 Overview—First, we transformed the existing dataset through “feature generation”(27) 

(described below) to create potential features for inclusion in the model. Next, we used 

stratified randomization to divide the dataset into training (2/3) and testing (1/3) sets to 

ensure balanced SSI outcomes in the training and testing sets. Then, we used supervised 

machine learning to train and optimize classifiers using only baseline features (BF), only 

serial features (SF), or both baseline and serial features (BF+SF). Next, we evaluated the 

best performing model on the testing set. Finally, we created and evaluated a simplified 

model using logistic regression intended to be more clinically applicable.

Microsoft Excel 2013 was used for feature generation. WEKA 3.7.12, an open source data 

mining package (http://www.cs.waikato.ac.nz/ml/weka/), was used to optimize and evaluate 

classifiers. For model training and evaluation, missing data were imputed using means for 

continuous variables and modes for binary/categorical variables. For serial variables (e.g. 

wound characteristics, vital signs), we used the same process as just described sequentially 

on each day leading up to “Day 0”. In general, for baseline features, we had <5% missing 

data except for pre-operative labs, which had anywhere between 17% (Hb) to 30-50% 

(Creatinine, BUN, platelets, WBC, CRP) to 50-60% (total bili, PT, PTT, albumin, total 

protein). For serial features, we had <5% missing data, with vital signs generally 2-3% 

missing and wound observations 3-5% missing. The most common reason for missing 

wound data was clinical need to retain an intact dressing. Less than 1% of data on outcomes 

(e.g. SSI, mortality) was missing.

 Feature generation—Feature generation refers to the process of taking raw, 

unstructured data to define “features” (conceptually similar to variables) for potential use in 
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the analysis. For each patient, we generated both BF (Results Table 1) and SF (Supplemental 

Table 1). For BF, we included raw values and discretized versions using established clinical 

cutoffs (e.g., duration of surgery >3 hours). For SF, we generated features from raw values, 

differences in values from day to day, maximums/minimums/averages over time, coefficients 

of variation over time, rates of change over time, and deviations from linear trendlines (i.e., 

expected value minus observed value). For each of these features, we included varying 

lookback periods, from 1 to 5 days prior to diagnosis. Lookback periods are cumulative, for 

example, a lookback period of 5 days includes data from days -5 through -1, e.g. the 

maximum heart rate over the previous 5 days. Data from the day of diagnosis was not 

included in any model. We describe which features, over which lookback periods, were most 

influential in the model in the Results section.

 Model training—We used a Naïve Bayes classifier, which is a conditional probability 

model that employs both the prior probability and the likelihood of the outcome to form a 

posterior probability,(28, 29) to build models with BF, SF, and BF+SF. We also explored 

models using support vector machines (SVM), logistic regression, and ensemble techniques 

(bagging, boosting, etc.). We initially chose the Naïve Bayes classifier based on its 

combination of simplicity and performance. Feature selection was performed by using a 

forward wrapper-based method(30) using an Information Gain(31) heuristic to optimize area 

under the ROC curve (AUC). In simpler terms, features were added to each model until they 

no longer resulted in improvements in AUC, a process analogous to stepwise selection 

employed in creation of logistic regression models. Within the training set, each classifier 

was trained and evaluated using 10-fold cross validation to avoid overfitting. In this 

procedure, the entire dataset is first randomly divided into ten equal parts, the models are 

trained on nine parts and tested on the tenth part, and this process is repeated ten times each 

time using a different part for testing (i.e., the same data was never used to both train and 

evaluate a classifier). The results of all these ten folds are then combined to compute the 

evaluation scores.

In an effort to create a simplified, more clinically-relevant model, we reduced the dataset to 

include only simple, easy-to-calculate serial features (minimum, average, maximum) limited 

to a 2 day look-back period (i.e. using only Day -1 and Day -2 data), and including only the 

top 5 features. We then used the same techniques described above with the exception of 

using a logistic regression model, which has the benefit of allowing quick clinical 

calculation of probabilities. We report odds ratios associated with the selected features; 

WEKA does not allow calculations of confidence intervals.

 Performance evaluation—Model performance was evaluated based on accuracy, 

Kappa, and AUC. All values are based on averages over 10 cross-validation runs on the 

training set and 1 run on the testing set. AUCs were tested for significance based on paired t-

test.

 Results

Of 851 participants included in analysis, 167 (19.6%) had at least one inpatient SSI and 62 

(7.3%) had at least one post-discharge SSI, for an overall SSI rate of 26.9%. Of inpatient 
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SSIs, the first infection was superficial for 126 (75%), deep for 22 (13%) and organ-space 

for 19 (11%). Figure 1 shows the overall distribution of SSIs based on post-operative day of 

diagnosis. Among first inpatient SSIs, the median SSI was diagnosed at day 8 (IQR 6-11), 

the median post-discharge SSI was diagnosed at day 18 (IQR 10-22), for overall median 9 

(IQR 6-13).

Post-discharge infections are included for descriptive purposes, but because of their small 

numbers and our lack of post-discharge wound observations, they are not a focus of this 

paper. Of note, 17 of 62 of post-discharge infections occurred within 3 days of discharge and 

26 of 62 occurred within 5 days of discharge. Table 1 shows differences in BF, and Table 2 

shows differences in SF, among patients with and without inpatient SSI.

 Baseline features (BF)

In the group that developed inpatient SSI, hemoglobin, albumin, and creatinine were 

significantly lower, while C-reactive protein was higher. Patients with SSI had procedures 

that were, on average, 59 minutes longer, had more wounds classified as “dirty”, more bowel 

and pancreatic operations, more ostomies created, more peri-operative blood transfusions, 

and fewer kidney or liver transplants. Patients with SSI had lengths of stay 9.9 days longer 

and an in-hospital mortality 5.3% greater.

Serial features (SF) shows that the prevalence of abnormal wound symptoms (defined as a 

score of >0 on any of the scales depicted in Supplemental Table 1) in the 5 days and 1 day 

prior to SSI is higher in the SSI group, except for wound edge color which was not 

associated with SSI until the day of diagnosis (Day 0; p=0.048). The bottom of Table 2 also 

shows, among patients who subsequently developed SSI, more use of NG decompression, 

more wound cultures ordered, higher heart rate, larger difference in body minus wound 

temperature, longer wound length, higher tympanic temperature, lower diastolic BP, and 

similar pain scores (except on day of SSI).

 Classifier performance

The following results relate to the performance of the Naïve Bayes classifiers trained on the 

baseline features (BF), serial features (SF) and the BF+SF datasets, and a “simplified SF” 

classifier using logistic regression. Table 3 demonstrates that the SF, SF+BF, and SF 

(simplified) classifiers perform best on both the training and testing sets. The differences 

between training AUC in the SF, BF+SF, and SF (simplified) classifiers were not statistically 

significant. Differences between training and testing AUC among all the classifiers were also 

not statistically significant, though this is likely due to lack of power given the small N of 

the holdout testing set; the simplified SF classifier shows a markedly lower testing set AUC. 

We chose the simper SF and SF (simplified) models for further evaluation.

Figure 2 shows the ROC curve for the SF classifiers, and Table 4 shows the resulting 

sensitivity/specificity combinations. The ROC curve is an average over 10 cross-validation 

runs on the training set. The points chosen on the curve were selected by eye for illustrative 

purposes.
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Table 5 shows the features selected by the SF models (both the original, full SF model and a 

simplified SF model) using a wrapper-based feature selection method. The order of the table 

represents the order in which the features were added to the model, with decreasing 

classification discrimination towards the bottom. We indicate which original data elements 

the selected features were based on, as well as the lookback period (ranging from cumulative 

5 days to 1 day prior to SSI), and the type of transformation used to generate the feature.

The final simplified SF model was: logit(p) = -3.087 + [NGtube.max2] * 0.645 + 

[degreeexudate.max2] * 0.213 + [pulse.max2] * 0.017 + [typeslough.max2] * 0.165 + 

[woundlength.max2] * 0.016

We did a post-hoc analysis of the performance of the full SF classifier among various 

subgroups to assess potential limitations in performance due to type and timing of SSI, 

shown in Figure 3. We demonstrate that the classifier performs equally well in identifying 

superficial, deep, and organ-space SSIs (sensitivity, left side of figure). We also show that 

performance tends to be consistent across post-operative days, with a possible trend toward 

higher sensitivity early in hospitalization (middle of figure). Finally, on the right side of the 

figure, we show that among patients who later go on to develop a post-discharge SSI, 

classifier specificity prior to discharge (i.e., detecting inpatients who do not currently have 

an SSI) is comparable, though tends to be lower than among patients who never develop SSI, 

likely due to some shared risk factors and/or slowly developing SSI while inpatient.

 Discussion

We demonstrate with a large inpatient prospectively collected dataset that serial physical 

examination and vital sign data is more informative than baseline risk factor data in a 

prognostic model of SSI after open abdominal surgery. In addition, we showed that patients 

with SSI differ from patients without SSI with regard to the prevalence of abnormal wound 

symptoms, especially in the 1-3 days prior to diagnosis.

Baseline data from our population supports numerous other studies identifying risk factors 

for SSI, for example, differences in hemoglobin, CRP, surgery duration, wound class, and 

surgery type.(32) Yet, we demonstrate that, in our dataset, baseline features provide 

relatively poor classification of SSI (AUC 0.670), while serial features have significantly 

better performance (AUC 0.760; p<0.0001). When the SF classifier was applied to the hold-

out test set, it achieved similar performance (AUC 0.741) to the training set, indicating that 

overfitting was not a significant concern. The addition of BF to the SF classifier did not 

improve performance significantly, indicating that serial features were both necessary and 

likely sufficient for optimal classification. We suggest that the SF classifier could be 

reasonably used as a screening tool, with 80% sensitivity, and 64% specificity (PPV 35%, 

NPV 93%; see Table 4).

The simplified SF model which used logistic regression and fewer, simpler features also 

performed well, with 75% sensitivity and 64% specificity (PPV 33%, NPV 92%), though 

showed decreased performance on the hold-out testing set. Such a model shows promise for 

quick bedside assessment of wounds (i.e., not the “black box” approach of many machine 
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learning approaches), though should be prospectively validated alongside the full, gold 

standard model to more confidently assess the potential performance-usability tradeoff.

In developing our models, we identified features that were most highly associated with 

diagnosis of subsequent SSI. Patients with SSI have an increased prevalence of abnormal 

wound symptoms in the 5 days prior to diagnosis. Yet, many of the most highly associated 

symptoms are not included in current definitions of SSI, and several of the least associated 

symptoms are. For example, the least associated wound-related features in Table 2 were 

wound edge color and amount of induration, calling into question whether these signs, 

currently included in the CDC definition of SSI, are ideal—or even reliable—indicators of 

infection. Upwards of 90% of both SSI and non-SSI patients in our dataset were deemed to 

have bright red skin surrounding their wound.

On the other hand, we found many good indicators of infection, including several that are 

not part of current definitions. For example, we found degree of granulation (i.e., a scale 

consisting of: closed wound, >75% filled, 50-75% filled, 25-50% filled, <25% filled) to be 

most associated with subsequent SSI diagnosis, and we found amount of exudate to be more 

associated with SSI than type of exudate. Wound edge distance was an excellent early 

indicator, as was heart rate, morning body temperature and, somewhat unexpectedly, 

nasogastric tube presence. Prolonged post-operative use of nasogastric decompression is an 

indicator of delayed recovery of gastrointestinal function, and has been demonstrated by 

others to be associated with inpatient SSI, likely as a marker for predisposition to 

complications rather than causative of SSI.(33) By incorporating objective elements into SSI 

definitions, infections may be identified earlier, reducing associated costs and morbidity and 

improving quality of care.

One key limitation of current risk models of SSI, including our own, is that they have been 

developed using data from inpatients. Yet, as economic and other legitimate concerns 

encourage rapid discharge of patients, 60% of SSIs now occur post-discharge, at a time 

when adequate follow-up is difficult.(34) Post-discharge SSIs are especially challenging 

because patients are ill-prepared to identify them, no standardized or reliable methods of 

post-discharge surveillance exist, and relatively few risk factors have been identified.(35–38) 

Delayed diagnosis of post-discharge SSIs has significant financial and quality costs, with 

more than half of patients who develop them readmitted to the hospital.(26, 37) Our dataset 

is unique in that, coming from a hospital in the Netherlands, length of stay is significantly 

longer than in the US (median 12 days in our dataset vs 5-6 days in the US), allowing us to 

observe events that might occur after discharge in the US.(3, 39) Yet, our dataset also has 

inherent limitations which likely decreased our model's ultimate performance—e.g., due to 

lack of data on patients after discharge, we combined patients with post-discharge SSI with 

patients who never developed SSI, and due to low numbers of deep and organ-space SSI, we 

combined all types of SSI into a single endpoint; with both of these decisions, we took a 

conservative, intention-to-treat approach rather than selectively excluding populations who 

do not fit neatly—to better show the prospective, “real-world” performance of our model. 

Also, our dataset represents only open or converted laparoscopic abdominal surgery patients 

treated in an academic setting, and includes different kinds of abdominal operations, 

including those among immunosuppressed patients. And finally, despite a concerted effort at 
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objective collection and scoring of wound data in the parent study, our secondary analysis of 

this data is ultimately dependent on the standard, inherently subjective CDC definition of 

SSI, which has been shown to be highly variable among surgeons and between surgeons and 

other providers.(23, 40–42) In light of our findings that wound features such as redness and 

induration are not reliable signs of evolving SSI, we suggest both a re-evaluation of the 

diagnostic process and a strengthening of the objective criteria are in order.

Future work will address many of the limitations of the current study: we aim to evaluate the 

full and simplified SF models' generalizability in a variety of real-world settings, 

prospectively testing the daily classification accuracy in a cohort of post-operative patients. 

In addition, we plan to initiate outpatient data collection, using our findings here to inform 

which wound features and symptoms we systematically track. Our work shows that looking 

at the wound daily has value; while this is a minor challenge for hospitalized patients, 

increasingly shorter hospitalizations demand new techniques to facilitate post-discharge 

surveillance to capture events when they happen. Our ultimate goal is to leverage mobile 

health technology to collect patient-generated data from multiple sources such as 

questionnaires, photos and other sensors, using automated image analysis to identify 

evolving infections in real time. Counterintuitively, we may never have a single, static 

model; the strength of machine learning is that it is iterative and data-driven, continuing to 

adapt and learn from additional populations and settings over time as the data source grows 

in volume and complexity.

As we continue this line of investigation to refine and apply the algorithm prospectively, this 

new kind of dynamic surveillance has potential to affect clinical practice in a number of 

ways. Used as a screening tool in unselected patients, an elevated calculated risk might 

increase vigilance in both nurses and doctors (e.g., in inpatients, closer lab monitoring or 

confirmatory imaging studies; in outpatients, shorter follow-up window), or decrease the risk 

that frank SSIs go unrecognized. Conversely, a low risk score could reassure patients that 

their post-operative wound is healing within acceptable norms, and avert unnecessary 

emergency evaluation. In the context of a patient with existing clinical suspicion of SSI, it 

may provide corroborating evidence of progression of infection, allowing earlier 

intervention, e.g. wound opening.

 Conclusions

Using a novel machine learning-based computational method, we show that serial features 

(i.e., daily wound observations and vital signs) outperform traditional baseline patient/

operative risk-factor data, providing moderate PPV and high NPV for identification of SSI in 

advance of clinical diagnosis. We demonstrate that features of evolving wound infection are 

discernable prior to the day of diagnosis, primarily based on vital signs and visual 

inspection, proving the value of objective daily wound assessment. Existing definitions of 

SSI may be made more reliable and more timely by incorporation of such objective features.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SSI surgical site infection

BF baseline features/baseline risk factors

SF serial features

AUC area under the ROC curve

CRP C-reactive protein

ASA American Society of Anesthesiologists

CDC Center for Disease Control
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Figure 1. 
Daily count of new inpatient (orange) and post-discharge (grey) SSIs.
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Figure 2. 
Receiver operating curve (ROC) of Serial Features classifiers with example sensitivity/

specificity pairs.
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Figure 3. 
Post-hoc analysis of SF classifier performance by type and day of SSI. Error bars show 95% 

CI.
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Table 1
Baseline Features from Patient Cohorts With and Without Inpatient SSI

Without SSI (N=684; 80.4%) With SSI (N=167; 19.6%) p Value

Demographics

 Age, y, mean, (95% CI) 56.2 (55.1-57.3) 57.5 (55.5-59.5) 0.29

 Male sex

0.81

  n (%) 247 (36.1) 62 (37.1)

  95% CI 0.33-0.40 0.30-0.45

Pre-operative labs

 Hemoglobin, g/dL, mean, (95% CI) 12.7 (12.6-12.9) 12.1 (11.6-12.6) <0.001

 Total protein, g/dL, mean, (95% CI) 6.8 (6.7-6.9) 6.7 (6.4-7.0) 0.82

 Albumin, g/dL, mean, (95% CI) 4.1 (4.0-4.2) 3.8 (3.6-4.0) 0.002

 Blood urea nitrogen, mg/dL, mean, (95% CI) 12.4 (11.4-13.3) 11.2 (8.9-13.4) 0.29

 Creatinine, mg/dL, mean, (95% CI) 3.3 (2.9-3.6) 2.2 (1.7-2.8) 0.006

 C-reactive protein, mg/L, mean, (95% CI) 2.7 (2.0-3.4) 5.5 (3.4-7.6) 0.002

 Platelet count, 103/uL, mean, (95% CI) 236 (226-246) 257 (230-283) 0.097

 WBC count, 103/uL, mean, (95% CI) 8.2 (7.8-8.6) 8.9 (8.0-9.8) 0.15

 PT, seconds, mean, (95% CI) 14.3 (13.5-15.1) 15.7 (13.4-18) 0.15

 aPTT, seconds, mean, (95% CI) 34.5 (33.3-35.6) 37.7 (34.0-41.4) 0.036

Procedure-related

 Duration of surgery, minutes, mean, (95% CI) 253 (244-262) 312 (289-335) <0.001

Wound class, n (%) <0.001

 Clean 135 (19.7) 12 (7.2)

 Clean-contaminated 497 (72.7) 131 (78.4)

 Contaminated 21 (3.1) 7 (4.2)

 Dirty 31 (4.5) 17 (10.2)

Type of operation, n (%) <0.001

 Abdominal wall 44 (6.4) 3 (1.8)

 Gastroduodenum 27 (3.9) 4 (2.4)

 Gall bladder/bile duct 31 (4.5) 4 (2.4)

 Liver 101 (14.8) 19 (11.4)

 Spleen/adrenal gland & other 29 (4.2) 4 (2.4)

 Small bowel 35 (5.1) 18 (10.8)

 Kidney 179 (26.2) 23 (13.8)

 Vascular 50 (7.3) 6 (3.6)

 Esophagus 75 (11.0) 25 (15.0)

 Large bowel 69 (10.1) 35 (21.0)

 Pancreas 44 (6.4) 26 (15.6)

Emergency surgery

0.45  n (%) 149 (21.8) 41 (24.6)
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Without SSI (N=684; 80.4%) With SSI (N=167; 19.6%) p Value

  95% CI 0.19-0.25 0.18-0.32

Kidney or liver transplantation

0.003

  n (%) 187 (29.2) 29 (17.8)

  95% CI 0.26-0.33 0.12-0.25

Ostomy created

0.023

  n (%) 40 (5.8) 18 (10.8)

  95% CI 0.04-0.08 0.07-0.16

Blood transfusion peri-op

0.017

  n (%) 146 (21.4) 50 (30.1)

  95% CI 0.18-0.25 0.23-0.38

Risk factors

 Smoking

0.12

  n (%) 287 (42.0) 59 (35.3)

  95% CI 0.38-0.46 0.28-0.43

 Diabetes mellitus type I or II

0.88

  n (%) 83 (12.2) 21 (12.6)

  95% CI 0.10-0.15 0.08-0.19

 Chronic lung disease

0.063

  n (%) 58 (8.5) 22 (13.2)

  95% CI 0.07-0.11 0.08-0.19

 Systemic corticosteroid use

0.23

  n (%) 79 (11.6) 25 (15.0)

  95% CI 0.09-0.14 0.10-0.21

 Chemotherapy in 3 months pre-op

0.83

  n (%) 46 (6.7) 12 (7.2)

  95% CI 0.05-0.09 0.04-0.12

 Radiotherapy in 3 months pre-op

0.97

  n (%) 12 (1.8) 3 (1.8)

  95% CI 0.01-0.03 0.00-0.05

 Ascites present

0.014

  n (%) 16 (2.3) 10 (6.0)

  95% CI 0.01-0.04 0.03-0.11

 Infection (non-SSI) at intake

0.33

  n (%) 75 (11.0) 14 (8.4)

  95% CI 0.09-0.14 0.05-0.14

 Alcohol use

0.71

  n (%) 311 (47.1) 70 (45.5)

  95% CI 0.43-0.51 0.37-0.54

 Alcohol quantity, units per week, mean, (95% CI) 4.5 (3.8-5.1) 5.2 (3.5-6.9) 0.34
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Without SSI (N=684; 80.4%) With SSI (N=167; 19.6%) p Value

 ASA score, n (%) 0.29

   ASA 1 76 (11.1) 15 (9.0)

   ASA 2 309 (45.2) 80 (47.9)

   ASA 3 280 (40.9) 67 (40.1)

   ASA 4 19 (2.8) 4 (2.4)

   ASA 5 0 (0.0) 1 (0.6)

BMI, n (%) 0.65

 Underweight 19 (2.8) 6 (3.6)

 Normal 317 (46.3) 67 (40.1)

 Overweight 220 (32.2) 59 (35.3)

 Class 1 obesity 80 (11.7) 20 (12.0)

 Class 2 obesity 20 (2.9) 8 (4.8)

 Class 3 obesity 8 (1.2) 2 (1.2)

Outcomes

 Length of stay, d, mean, (95% CI) 15.0 (13.8-16.2) 24.9 (22.0-27.8) <0.001

 30 day mortality

0.036

  n (%) 16 (2.3) 9 (5.4)

  95% CI 0.01-0.04 0.02-0.10

 In-hospital mortality

0.004

  n (%) 25 (3.7) 15 (9.0)

  95% CI 0.02-0.05 0.05-0.14

aPTT, activated partial thromboplastin time; ASA, American Society of Anesthesiologists; PT, prothrombin time; WBC, white blood cell
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Table 5
Features Selected for Final Complex SF Model and Simplified SF Model, In Order of 
Decreasing Predictive Importance

Original data element from which feature was derived Lookback period (days) Transformation type Odds ratio

Complex SF model (Naïve Bayes)

 Granulation score 2 Mean value

 Exudate amount score 3 Maximum value

 Nasogastric tube presence 2 Maximum value

 Granulation score 5 Maximum value

 Nasogastric tube presence 5 Maximum value

 Heart rate 3 Maximum value

 Heart rate 4 Daily change

 Temperature of wound minus skin 5 Deviation from trend

 Wound length 2 Maximum value

 Wound culture ordered 5 Maximum value

 Body temperature 5 Maximum value

 Diastolic blood pressure 2 Raw value

Simplified SF model (Logistic regression)

 Nasogastric tube presence 2 Maximum value 1.91 (binary)

 Exudate amount score 2 Maximum value 1.24 (per score increment)

 Heart rate 2 Maximum value 1.18 (per 10 bpm)

 Slough type score 2 Maximum value 1.18 (per score increment)

 Wound length 2 Maximum value 1.02 (per cm)

SF, serial features
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